MasterSeries – Masonry Wall Design
Sample Output

The following output is from the Masonry Wall Design program.

Contents

2 Cavity wall panel with wind (EC)
4 Cavity wall panel with door and window openings (to EC)
6 Single leaf garden wall with piers (BS)
7 Cavity wall panel with intermediate wind post (EC)
9 Cavity wall panel with beam point loads (BS)
11 External wall panel with multiple openings and wind post (EC)
13 Panel with lateral line load (EC)
14 Blockwork column vertically loaded (EC)
15 Cavity wall panel with in plane racking forces (EC)
Cavity wall panel with wind

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL

DESIGN TO BS EN 1996-1-1:2005

Summary of Design Data

EuroCode National Annex
Using UK values: A1 2012
Wall Dimensions
h=3.000 m, hef=2.206 m (Eqn. 5.8), L=5.000 m, Lef=5.000 m
Support Conditions
Bottom Cont., Top Simple, Left Simple, Right Simple
Lateral Loads
Wx=0.75 kN/m²
Cavity Wall (mm)
t1=102.5, t2=100, tef=127.6
Limiting Dimensions
λ=17.3 ≤ λlim = 27, L/tef = 39.2, H/tef = 23.5, Hence
H/tef ≤ 52.4

Outer-Leaf Design

Partial Safety Factor (γmc/γmf)
Units Category II, Execution Control Class 2
3/2.7

Material
Clay bricks with water absorption over 12%

Compressive Strength (fk)
Group 1, γ=20 kN/m³
fkk = 20 N/mm²

Section Properties
Area=1025 cm²/m, Zp=1751 cm³/m

Flexural Strength fak2 (Perpendicular)
fak2=0.3, gd=0.03 N/mm²

Flexural Strength fak1 (Parallel)
fak1=0.25, gd=0.03 N/mm²

Critical axial compressive case
Max local stress @
X=0 m, Y=1.5 m < f /γmc
0.08 N/mm²
OK

Critical axial buckling case
Max axial buckling force @
X=2.5 m, Y=1.5 m averaged over width of 1.025 m
8.3kN/m

Moments from Lateral Load
Mwx,top = 0.000 kN.m
Mwx,mid = 0.064 kN.m

Capacity reduction factor top, ~Fex=0.0 mm, hef=2206 mm, tef=127.6 mm, t=102.5 mm
0.900

Critical axial compressive case
Max local stress @
X=0 m, Y=1.5 m < f /γmc
0.08 N/mm²
OK

Critical axial buckling case
Max axial buckling force @
X=2.5 m, Y=1.5 m averaged over width of 1.025 m
8.1kN/m

Moments from Lateral Load
Mwx,top = 0.000 kN.m
Mwx,mid = 0.064 kN.m

Capacity reduction factor top, ~Fex=0.0 mm, hef=2206 mm, tef=127.6 mm, t=102.5 mm
0.900

Inner-Leaf Design

Partial Safety Factor (γmc/γmf)
Units Category II, Execution Control Class 2
3/2.7

Material
Concrete blocks, γ=20 kN/m³

Compressive Strength (fk)
Group 1
fkk = 4.44 N/mm²

Section Properties
Area=1000 cm²/m, Zp=1667 cm³/m

Flexural Strength fak2 (Perpendicular)
fak2=0.25, gd=0.03 N/mm²

Flexural Strength fak1 (Parallel)
fak1=0.25, gd=0.03 N/mm²

Critical axial compressive case
Max local stress @
X=0 m, Y=1.5 m < f /γmc
0.08 N/mm²
OK

Critical axial buckling case
Max axial buckling force @
X=2.5 m, Y=1.5 m averaged over width of 1 m
8.1kN/m

Moments from Lateral Load
Mwx,top = 0.000 kN.m
Mwx,mid = 0.064 kN.m

Capacity reduction factor top, ~Fex=0.0 mm, hef=2206 mm, tef=127.6 mm, t=100.0 mm
0.900

Creep coef. = 1.5, ehm = 0.120 mm, h=2.206
0.693

Fr=ψfc tk/γmc
0.693 x 6.17 x 102.5 / 2.7 = 146.1 kN/m

Fd/Fr = 8.3/146.1 = 0.057
OK

Mro=fkxk2.Zp/γmf
0.584 kN.m/m

Mro=fkxk1.Zb/γmf
0.247 kN.m/m
MasterSeries Sample Output

3 Castle Street
Carrickfergus
County Antrim BT38 7BE
Tel: 028 9036 5950

Design for Lateral Loads

<table>
<thead>
<tr>
<th>Design Lateral Load Wd</th>
<th>1.5 Wx</th>
<th>1.125 kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Line Analysis</td>
<td>Load Factor, λ_0</td>
<td>1.149</td>
</tr>
<tr>
<td>$U_t=1/\lambda_0$</td>
<td></td>
<td>0.870</td>
</tr>
</tbody>
</table>
Cavity wall panel with door and window openings

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL
DESIGN TO BS EN 1996-1-1:2005

Summary of Design Data

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall Dimensions</td>
<td>h=2.500 m, hef=2.000 m (Eqn. 5.8), L=5.000 m, Lef=5.000 m</td>
</tr>
<tr>
<td>Support Conditions</td>
<td>Bottom Cont., Top Simple, Left Simple, Right Simple</td>
</tr>
<tr>
<td>Lateral Loads</td>
<td>Wx=0.75 kN/m²</td>
</tr>
<tr>
<td>Cavity Wall (mm)</td>
<td>t1=102.5, t2=100, tef=127.6</td>
</tr>
<tr>
<td>Limiting Dimensions</td>
<td>(\lambda = 15.7, L_{ef} = 39.2, H_{t} = 19.6, H_{tef} = 52.4)</td>
</tr>
</tbody>
</table>

Outer-Leaf Design

Partial Safety Factor (y mc/y mf)	Units Category II, Execution Control Class 2 3/2.7 Table NA.1
Material	Clay bricks with water absorption over 12%
Units and Mortar Strength	fb = 20 N/mm², fm = Mortar designation M4/(iii)
Compressive Strength (fc)	Group 1, \(\gamma = 20 \) kN/m³ Table NA.4
Section Properties	Area=1025 cm²/m, Zp=1751 cm³/m
Flexural Strength fux (Perpendicular)	fux=0.3, gd=0.025 N/mm²
Flexural Strength fux (Parallel)	fux=fux+min(gd, 0.24\(f_{ck}/\gamma_{mc} \))y mf
Critical axial compressive case	\(1.35(y_{tk}.h) \)
Max local stress @	X=0.505 m, Y=1.25 m < f k/y mc
Critical axial buckling case	\(1.35(y_{tk}.h) \)
Max axial buckling force @	X=4.487 m, Y=1.25 m averaged over width of 1.025 m
Moments from Lateral Load	\(M_{max,2}=0.000 \) kN.m, \(M_{max,ef}=0.000 \) kN.m
Capacity reduction factor top, ~F	ex=0.0 mm, hef=1772 mm, tef=127.6 mm, t=102.5 mm
Capacity reduction factor mid, ~F	0.09 N/mm²
FFr= Ffr, Zp/ymc	0.051 OK
Mro= fux, Zp/ymf	0.584 kN/m/m
Mrm= fux, Zb/ymf	0.238 kN/m/m

Inner-Leaf Design

Partial Safety Factor (y mc/y mf)	Units Category II, Execution Control Class 2 3/2.7 Table NA.1
Material	Concrete blocks, \(\gamma = 20 \) kN/m³
Units and Mortar Strength	fb = 7 N/mm², fm = Mortar designation M4/(iii) Unit height=215, Least horizontal dimensions=100 2.15
Compressive Strength (fc)	Group 1 4.44 N/mm² Table NA.4
Section Properties	Area=1000 cm²/m, Zp=1667 cm³/m
Flexural Strength fux (Perpendicular)	fux=0.25, gd=0.025 N/mm²
Flexural Strength fux (Parallel)	fux=fux+min(gd, 0.24\(f_{ck}/\gamma_{mc} \))y mf
Critical axial compressive case	\(1.35(y_{tk}.h) \)
Max local stress @	X=0.51 m, Y=1.25 m < f k/y mc
Critical axial buckling case	\(1.35(y_{tk}.h) \)
Max axial buckling force @	X=4.499 m, Y=1.25 m averaged over width of 1 m
Moments from Lateral Load	\(M_{max,2}=0.000 \) kN.m, \(M_{max,ef}=0.000 \) kN.m
Capacity reduction factor top, ~F	ex=0.0 mm, hef=1772 mm, tef=127.6 mm, t=100.0 mm
Capacity reduction factor mid, ~F	0.09 N/mm²

Diagram: Cavity wall panel with door and window openings.
MasterSeries Sample Output

3 Castle Street
Carrickfergus
County Antrim BT38 7BE
Tel: 028 9036 5950

<table>
<thead>
<tr>
<th>Job ref</th>
<th>My Project</th>
<th>Sheet</th>
<th>My Walls / 5 -</th>
</tr>
</thead>
<tbody>
<tr>
<td>Made By</td>
<td>ATW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>21 June 2015/ Version 2017.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Checked</td>
<td>GHB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved</td>
<td>MOG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Design for Lateral Loads

<table>
<thead>
<tr>
<th>Design Lateral Load Wd</th>
<th>1.5 Wx</th>
<th>1.125 kN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield Line Analysis</td>
<td>Load Factor, λp</td>
<td>1.081</td>
</tr>
<tr>
<td>Ut=1/λp</td>
<td>1 / 1.081</td>
<td>0.925</td>
</tr>
</tbody>
</table>

Fr=/~F,tk/ymc	0.769x4.44x100/3	113.7 kN/m
Fd/Fr	8.1/113.7	0.071 OK
Mri=fz2.Zp/ymf	0.588x1667/2.7	0.363 kN.m/m
Mri=fz1.Zb/ymf	0.318x1667/2.7	0.196 kN.m/m

OK
Single leaf garden wall with piers

FREE STANDING, LATERALLY LOADED, STIFFENED SINGLE-LEAF WALL

DESIGN TO BS 5628 : 2005

Summary of Design Data

Wall Dimensions
h=1.200 m, hef=2.400 m, L=5.000 m, Lef=5.000 m

Support Conditions
Free Standing Wall, Bottom Cont.

Lateral Loads
Wx=0.4 kN/m²

Single-leaf Wall (mm)

Limiting Dimensions
\(\lambda = 13.7 \leq \lambda_{\text{lim}} = 27, \ h < 12 \ t_{\text{ef}} \)

Wall Design

Partial Safety Factor (\(\gamma_{mc}/\gamma_{mf} \))
Normal manufacturing, Normal construction

Concrete blocks, \(\gamma = 20 \ \text{kN/m}^3 \)

Material

Units and Mortar Strength
7 N/mm², Mortar designation M4/(iii)

Compressive Strength (fk)

Solid Concrete block wall

6.2 N/mm²

Table 2

Effective Width (be)

H=1.2 m, t=140, tp=325, wp=215, ccp=2250

Area=609 cm²/m, Zb=3267 cm³/m, Zp=3267 cm³/m

695 mm

Section Properties Pier

Zb=13029 cm³/m, Zp=17604 cm³/m

Flexural Strength fkb (Parallel)

fkb=0.223, gd=0.024 N/mm², fkb=fkb+0.9 gd,ymf

0.288 N/mm²

Table 3

Critical axial compressive case

1.4(\(\gamma \cdot t_k \cdot h \))

Max local stress @
X=0 m, Y=0 m < fk/\(\gamma_{mc} \)

0.03 N/mm²

OK

Critical axial buckling case

1.4(\(\gamma \cdot t_k \cdot h \))

Max axial buckling force @
X=2.5 m, Y=0 m averaged over width of 1.4 m

4.7kN/m

Capacity reduction factor top, \(\beta \)

ex=0.0 mm, hef=2400 mm, tef=175.3 mm, t=140.0 mm

0.961

Fr=\(\beta \cdot f_k \cdot t \cdot y_{mc} \)

0.961x6.2x140/3.5

238.3 kN/m

Fd/Fr

4.7/238.3

0.020

OK

Mrf=\(f_k \cdot Z_p \cdot y_{mc} \)

0.522x3267/3

0.569 kN/m

Mrf=\(f_k \cdot Z_p \cdot y_{mc} \)

0.288x3267/3

0.314 kN/m

Mrf=\(f_k \cdot Z_p \cdot y_{mc} \)

0.522x17604/3

3.060 kN/m

Mrf=\(f_k \cdot Z_p \cdot y_{mc} \)

0.288x13029/3

1.250 kN/m

Design for Lateral Loads

Design Lateral Load Wd

1.4 Wx

0.560 kN/m²

Yield Line Analysis

Load Factor, \(\lambda_p \)

1.070

Ut=1/\(\lambda_p \)

1 / 1.070

0.935

OK
Cavity wall panel with intermediate wind post

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL

DESIGN TO BS EN 1996-1-1:2005

Summary of Design Data

Using UK values: A1 2012

Wall Dimensions
h=3.000 m, hef=2.312 m (Eqn. 5.8), L=10.000 m, Lef=10.000 m

Wind post assumed to act as stiffening, L = 5.500 m, Lef = 5.500 m

Support Conditions
Bottom Cont., Top Simple, Left Simple, Right Simple

Lateral Loads
Wx=0.75 kN/m²

Cavity Wall (mm)
t1=102.5, t2=100, tef=127.6

Limiting Dimensions
λ=18.1<λlim=27, L/tef=43.1, H/tef=23.5, Hence H/tef<49.2

Outer-Leaf Design

Partial Safety Factor (γmc/γmf)
Units Category II, Execution Control Class 2

Material
Clay bricks with water absorption over 12%

Compressive Strength (fk)
Group 1, γ=20 kN/m³

6.17 N/mm²

Section Properties
Area=1025 cm²/m, Zp=1751 cm³/m

Flexural Strength f_{xk2} (Perpendicular)
1.35(y.tk.h)

0.9 N/mm²

Critical axial compressive case
X=0, Y=1.5 m < fk/fyec

0.08 N/mm²

Critical axial buckling case
X=5 m, Y=1.5 m averaged over width of 1.025 m

8.3kN/m

Moments from Lateral Load
Fr=0.670x6.17x102.5/3

141.3 kN/m

Mro=f_{xk2}.Zp/γmf

Mro=f_{xk1}.Zb/γmf

8.1kN/m

Inner-Leaf Design

Partial Safety Factor (γmc/γmf)
Units Category II, Execution Control Class 2

Material
Concrete blocks, γ=20 kN/m³

Compressive Strength (fk)
Group 1

Unit height=215, Least horizontal dimensions=100

Compressive Strength (fk)

4.44 N/mm²

Section Properties
Area=1000 cm²/m, Zp=1667 cm³/m

Flexural Strength f_{xk2} (Perpendicular)
1.35(y.tk.h)

0.331 N/mm²

Critical axial compressive case
X=0 m, Y=1.5 m < fk/fyec

0.08 N/mm²

Critical axial buckling case
X=5 m, Y=1.5 m averaged over width of 1 m

8.1kN/m
Design for Lateral Loads

Design Lateral Load W_d

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base pinned, Top pinned, Major axis bending</td>
<td>1.5 W_x</td>
</tr>
<tr>
<td>Inner leaf discontinuous, outer leaf continuous</td>
<td>1.125 kN/m²</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

$$M_{wx,top} = 0.000 \text{ kN.m}, \quad M_{wx,mid} = 0.063 \text{ kN.m}$$

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Wind Post Stiffening

Wind post is assumed to act as stiffener, influencing hef

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fr=\sim F.f_k.t_k/\gamma mc$</td>
<td>98.8 kN/m</td>
</tr>
</tbody>
</table>

Wind Post Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
<td>OK</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{wx,top}$</td>
<td>0.000 kN.m</td>
</tr>
<tr>
<td>$M_{wx,mid}$</td>
<td>0.063 kN.m</td>
</tr>
</tbody>
</table>

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Design for Lateral Loads

Design Lateral Load W_d

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base pinned, Top pinned, Major axis bending</td>
<td>1.5 W_x</td>
</tr>
<tr>
<td>Inner leaf discontinuous, outer leaf continuous</td>
<td>1.125 kN/m²</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

$$M_{wx,top} = 0.000 \text{ kN.m}, \quad M_{wx,mid} = 0.063 \text{ kN.m}$$

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Wind Post Stiffening

Wind post is assumed to act as stiffener, influencing hef

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fr=\sim F.f_k.t_k/\gamma mc$</td>
<td>98.8 kN/m</td>
</tr>
</tbody>
</table>

Wind Post Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
<td>OK</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{wx,top}$</td>
<td>0.000 kN.m</td>
</tr>
<tr>
<td>$M_{wx,mid}$</td>
<td>0.063 kN.m</td>
</tr>
</tbody>
</table>

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Wind Post Stiffening

Wind post is assumed to act as stiffener, influencing hef

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fr=\sim F.f_k.t_k/\gamma mc$</td>
<td>98.8 kN/m</td>
</tr>
</tbody>
</table>

Wind Post Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
<td>OK</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{wx,top}$</td>
<td>0.000 kN.m</td>
</tr>
<tr>
<td>$M_{wx,mid}$</td>
<td>0.063 kN.m</td>
</tr>
</tbody>
</table>

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Wind Post Stiffening

Wind post is assumed to act as stiffener, influencing hef

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fr=\sim F.f_k.t_k/\gamma mc$</td>
<td>98.8 kN/m</td>
</tr>
</tbody>
</table>

Wind Post Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
<td>OK</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{wx,top}$</td>
<td>0.000 kN.m</td>
</tr>
<tr>
<td>$M_{wx,mid}$</td>
<td>0.063 kN.m</td>
</tr>
</tbody>
</table>

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Wind Post Stiffening

Wind post is assumed to act as stiffener, influencing hef

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fr=\sim F.f_k.t_k/\gamma mc$</td>
<td>98.8 kN/m</td>
</tr>
</tbody>
</table>

Wind Post Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
<td>OK</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{wx,top}$</td>
<td>0.000 kN.m</td>
</tr>
<tr>
<td>$M_{wx,mid}$</td>
<td>0.063 kN.m</td>
</tr>
</tbody>
</table>

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Wind Post Stiffening

Wind post is assumed to act as stiffener, influencing hef

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fr=\sim F.f_k.t_k/\gamma mc$</td>
<td>98.8 kN/m</td>
</tr>
</tbody>
</table>

Wind Post Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
<td>OK</td>
</tr>
</tbody>
</table>

Moments from Lateral Load

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{wx,top}$</td>
<td>0.000 kN.m</td>
</tr>
<tr>
<td>$M_{wx,mid}$</td>
<td>0.063 kN.m</td>
</tr>
</tbody>
</table>

Capacity reduction factor top, $\sim F_{ex}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ex</td>
<td>0.0 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Capacity reduction factor mid, $\sim F_{m}$

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{m}</td>
<td>1.5</td>
</tr>
<tr>
<td>ehm</td>
<td>0.118 mm</td>
</tr>
<tr>
<td>hef</td>
<td>2312 mm</td>
</tr>
<tr>
<td>tef</td>
<td>127.6 mm</td>
</tr>
<tr>
<td>t</td>
<td>100.0 mm</td>
</tr>
</tbody>
</table>

Wind Post Stiffening

Wind post is assumed to act as stiffener, influencing hef

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fr=\sim F.f_k.t_k/\gamma mc$</td>
<td>98.8 kN/m</td>
</tr>
</tbody>
</table>

Wind Post Design

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
<td>OK</td>
</tr>
</tbody>
</table>
Cavity wall panel with beam point loads

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL

DESIGN TO BS 5628 : 2005

Summary of Design Data

Wall Dimensions
Support Conditions
Lateral Loads
Cavity Wall (mm)
Limiting Dimensions

Outer-Leaf Design
Partial Safety Factor (γmc/γmf)
Material
Units and Mortar Strength
Compressive Strength (fk)
Section Properties
Flexural Strength fkp (Perpendicular)
Flexural Strength fkb (Parallel)
Critical axial compressive case
Max local stress @
Critical axial buckling case
Max axial buckling force @
Capacity reduction factor top, β
Fr=β.fk.tk/ymc
Fd/Fr
Mro=fkp.Zp/γmf
Mro=fkb.Zb/γmf

Inner-Leaf Design
Partial Safety Factor (γmc/γmf)
Material
Units and Mortar Strength
Blocks Ratio
Compressive Strength (fk)
Loads from above
Loads @ this level
Section Properties
Flexural Strength fkp (Perpendicular)
Flexural Strength fkb (Parallel)
Critical axial compressive case
Max local stress @
Critical axial buckling case
Max axial buckling force @
Capacity reduction factor top, β
Fr=β.fk.tk/ymc
Fd/Fr
Mro=fkp.Zp/γmf
Mro=fkb.Zb/γmf
Point load design method

Design based on axial load take down for wall compression design. No design for bending due to point loads.

Point Load at 2m
- **gk**: 10 kN, **qk**: 15 kN, Bearing Length: 100 mm width: 50 mm
- **Bearing Stress**: \((1.4 \times 10 + 1.6 \times 15) \times 1000 / (300 \times 100)\) = 1.27 N/mm²
- **Local Bearing Capacity**
 - BS5628-1:2005 Figure 4 - Bearing Type 1, \(1.25 \frac{f_k}{\gamma_m c}\) = 2.54 N/mm²
 - **OK**

Point Load at 3.5m
- **gk**: 13 kN, **qk**: 20 kN, Bearing Length: 150 mm width: 75 mm
- **Bearing Stress**: \((1.4 \times 13 + 1.6 \times 20) \times 1000 / (300 \times 100)\) = 1.67 N/mm²
- **Local Bearing Capacity**
 - BS5628-1:2005 Figure 4 - Bearing Type 1, \(1.25 \frac{f_k}{\gamma_m c}\) = 2.54 N/mm²
 - **OK**

Bearing Stress
- \(M_{ri} = f_{kp} Z_p / \gamma_m f\)
- \(M_{ri} = f_{kb} Z_b / \gamma_m f\)
- \(0.75 \times 1667 / 3 = 0.417 \text{kN.m/m}\)
- \(0.855 \times 1667 / 3 = 0.475 \text{kN.m/m}\)

Design for Lateral Loads

Design Lateral Load **Wd**
- \(1.4 \times W_x\) = 1.050 kN/m²

Yield Line Analysis
- **Load Factor, \(\lambda_p\)**
- \(\frac{1}{1.611}\) = 0.621
- **OK**
External wall panel with multiple openings and wind post

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL

DESIGN TO BS EN 1996-1-1:2005

Summary of Design Data

EuroCode National Annex
Using UK values: A1 2012

Wall Dimensions
h=3.000 m, hef=2.272 m (Eqn. 5.8), L=8.000 m, Lef=8.000 m

Wind Post L reduction
Wnd post assumed to act as stiffening, L = 5.300 m, Lef = 5.300 m

Support Conditions
Bottom Cont., Top Simple, Left Simple, Right Simple

Lateral Loads
Wx=0.75 kN/m²

Cavity Wall (mm)
t1=102.5, t2=100, tef=127.6

Limiting Dimensions
λ=17.8<=λlim=27, L/t,Nef=41.5, H/tef=23.5, Hence H/tef<=49.6

Outer-Leaf Design

Partial Safety Factor (γmc/γmf)
Units Category II, Execution Control Class 2

Material
Clay bricks with water absorption over 12%

Compressive Strength (fk)
Group 1, γ=20 kN/m³

Section Properties
Area=1025 cm²/m, Zp=1751 cm³/m

Flexural Strength f, (Perpendicular)
f,=0.3, gd=0.035 N/mm²
f,=f,+(gd, 0.2fk/γmc)γmf
0.394 N/mm²

Critical axial compressive case
Max local stress @
X=4.949 m, Y=1.5 m < fk/γmc
0.14 N/mm²

Critical axial buckling case
Max axial buckling force @
X=5.1 m, Y=1.5 m averaged over width of 0.8 m
13.44kN/m

Capacity reduction factor top, ~F
Fr=F,tk/γmc
0.977

Moments from Lateral Load
Mwx,top=0.000 kN.m, Mwx,mid=0.000 kN.m

Inner-Leaf Design

Partial Safety Factor (γmc/γmf)
Units Category II, Execution Control Class 2

Material
Concrete blocks, γ=20 kN/m³

Compressive Strength (fk)
Group 1

Section Properties
Area=1000 cm²/m, Zp=1667 cm³/m

Flexural Strength f, (Perpendicular)
f,=0.25, gd=0.035 N/mm²
f,=f,+(gd, 0.2fk/γmc)γmf
0.344 N/mm²

Critical axial compressive case
Max local stress @
X=4.954 m, Y=1.5 m < fk/γmc
0.15 N/mm²

Critical axial buckling case
Max axial buckling force @
X=5.1 m, Y=1.5 m averaged over width of 0.8 m
13.11kN/m

Moments from Lateral Load
M,d=0.000 kN.m, M,mid=0.000 kN.m

ex=0.0 mm, hef=900 mm, tef=127.6 mm, t=102.5 mm
0.90
<table>
<thead>
<tr>
<th>Design for Lateral Loads</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Lateral Load Wd</td>
<td>1.5 Wx 1.125 kN/m²</td>
</tr>
<tr>
<td>Wind Post Data</td>
<td>Base pinned, Top pinned, Major axis bending</td>
</tr>
<tr>
<td>Leaf Continuity at Wind Posts</td>
<td>Inner leaf continuous, outer leaf continuous</td>
</tr>
<tr>
<td>Wind posts at 2.7m</td>
<td>100x50 PFC 10 (S 355), $M_{pl} = 14.768$ kN.m</td>
</tr>
<tr>
<td>Yield Line Analysis</td>
<td>Load Factor, λ 1.072</td>
</tr>
<tr>
<td>$U_l=1/A_p$</td>
<td>1 / 1.072 0.933 OK</td>
</tr>
<tr>
<td>Wind Post Design</td>
<td>Full restrained moment capacity implicitly checked in yield line analysis</td>
</tr>
</tbody>
</table>
Panel with lateral line load

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, SINGLE-LEAF WALL

DESIGN TO BS EN 1996-1-1:2005

Summary of Design Data

Using UK values: A1 2012
Wall Dimensions
h=3.000 m, hef=2.630 m (Eqn. 5.8), L=8.000 m, Lef=8.000 m
Support Conditions
Bottom Cont., Top Simple, Left Simple, Right Simple
Lateral Loads
Wx=0.25 kN/m²
Lateral Line Loads
2.0=kN/m, X1=2.1 m, Y1=2.1 m, X2=6.0 m, Y2=2.1 m
Single-leaf Wall (mm)
t=215, tef=215
Limiting Dimensions
λ=12.2<λlim=27, L/tef=37.2, H/tef=14, Hence
H/tef<=58.4

Wall Design

Partial Safety Factor (γmc/γmf)
Units Category II, Execution Control Class 2
Concrete blocks, γ=20 kN/m³
Group 1
2.15
4.44 N/mm²
Flexural Strength f_{s1} (Perpendicular)
f_{s1}=0.173, gd=0.03 N/mm²
2.245 N/mm²
Critical axial compressive case
1.35(y.t.k.h)
0.08 N/mm²
Capacity reduction factor top, ~F
ex=0.0 mm, hef=2630 mm, tef=215.0 mm, t=215.0 mm
0.900
Creep coef. =1.5, ehm = 0.000 mm, hef = 2.630
0.801
Fr=1.5, Fy,k/γmc
0.801x4.4x215/3
254.7 kN/m
Fd/Fr
17.4/254.7
0.068
Mr=M_{s1},Zp/γmf
0.399x7704/2.4
1.282 kN.m/m
0.788 kN.m/m

Design for Lateral Loads

Design Lateral Load Wd
1.5 Wx
0.375 kN/m²
Yield Line Analysis
Load Factor, λ_p
1 / 1.019
Tel: 028 9036 5950
Blockwork column vertically loaded

VERTICALLY SPANNING, VERTICALLY AND LATERALLY LOADED, MASONRY COLUMN

DESIGN TO BS EN 1996-1-1:2005

Summary of Design Data

- **Column Dimensions**: h=3.000 m, hef xx=3.000 m, hef zz=2.250
- **Support Conditions**: Vertically Spanning Column, Top Simple, Bottom Cont.
- **Lateral Loads**: Wx=0.25 kN/m
- **Masonry Column**: t=215 mm, b=325 mm, tef=215 mm, bef=325 mm
- **Limiting Dimensions**: λ=14<=λlim=27, h<=35 tef

Column Design

- **Material**: Concrete blocks, γ=20 kN/m³
- **Units and Mortar Strength**: fb = 7.3 N/mm², fm = Mortar designation M4/(iii)
- **Blocks Ratio**: Unit height=100, Least horizontal dimensions=215
- **Compressive Strength (fc)**
 - **Group 1**: 2.77 N/mm², Small Area
 - **Section Properties**: Area=699 cm², Zx=2504 cm³
 - **Flexural Strength f_{x1} (Parallel)**: 0.173, gd=0.431 N/mm²
 - **Capacity reduction factor, ~F**: 0.672 N/mm²

Fr = ~F.f_{x1}.Area/ymc
Fd/Fr = 1.25(γ.Area.h+gk+gku)+1.5qk+1.5qku = 62.7/64.6 = 0.972 OK

Bending Moment Coefficient
- **Vertically Spanning**: 0.086
- **Non-Spanning**: 0.0623 kN.m

Design for Lateral Loads

- **Mdx=1.5 α.Wx.h²**: 1.5x0.086x0.25x3² = 0.290 kN.m
- **Mdz=1.5 α.Wz.h²**: 1.5x0.086x0.25x3² = 0.000 kN.m
- **Moment Capacity Check**: 0.290/0.623+0.000/0.940 = 0.465 OK
Cavity wall panel with in plane racking forces

TWO WAY SPANNING, VERTICALLY AND LATERALLY LOADED, CAVITY WALL

DESIGN TO BS EN 1996-1-1:2005

Summary of Design Data

EuroCode National Annex
Using UK values: A1 2012
Wall Dimensions
h=2.350 m, h_eff=1.747 m (Eqn. 5.8), L=4.000 m, L_eff=4.000 m
Support Conditions
Bottom Cont., Top Simple, Left Simple, Right Simple
Lateral Loads
Wx=0.75 kN/m²
Horizontal Loads
Qz=23.0 kN, Mz=12.0 kN.m, 50% Resisted by the outer leaf
Cavity Wall (mm)
t=102.5, t_eff=127.6
Limiting Dimensions
λ=13.7<λ_eff=27, L_eff/t=31.3, H_eff/t=18.4, Hence H_eff/t_low=76

Outer-Leaf Design

Partial Safety Factor (γ_m/c/γ_m/f)
Units Category II, Execution Control Class 2
3/2.7
Material
Clay bricks with water absorption over 12%

Compressive Strength (f_k)
Group 1, γ=20 kN/m³
4.44 N/mm²

Section Properties
Area=1025 cm²/m, Z_p=1751 cm³/m, Z_z=266667 cm³

Flexural Strength f_xk2 (Perpendicular)
0.9 N/mm²

Critical axial compressive case
1.25(y.t.k.h)

Moments from Lateral Load
M_{x=2.000 kN.m, M_{z=1751 cm³/m, Z_{z}=273333 cm³

Capacity reduction factor top, ~F
ex=0.0 mm, h_eff=1747 mm, t_eff=127.6 mm, t=102.5 mm
1.00

f_m=ax=F.f_k/γ_m/c
0.772x6.17/3
1.589 N/mm²

Dead plus Live
1.25 Dead + 1.5 Live
V=12.044 kN, L_eff=4.0 m
0.029 N/mm²
OK

Dead plus Live plus Wind(Mz+Qz)
1.25 Dead + 1.05 Live + 1.5 (Mz+Qz)
M_{z=9.0 kN.m, V=12.044 kN, Lef=3.758 m
0.069 N/mm²
OK

Shear Stress vh/f_vk
Qz=17.25 kN, (17250/385213)/(0.212/2.5)
0.529
OK

Bending Moment Coefficient
h/L=0.59, ~m=0.40
0.031
Annex E

Inner-Leaf Design

Partial Safety Factor (γ_m/c/γ_m/f)
Units Category II, Execution Control Class 2
3/2.7
Material
Concrete blocks, γ=20 kN/m³

Compressive Strength (f_k)
Group 1
4.44 N/mm²

Section Properties
Area=1000 cm²/m, Z_p=1667 cm³/m, Z_z=266667 cm³
0.588 N/mm²

M_ro=f_xk2.Z_p/γ_m/f
0.9x1751/2.7
0.584 kN.m/m
MasterSeries Sample Output

Flexural Strength f_{x1} (Parallel) $f_{x1}=0.25, \text{gd}=0.023 \text{ N/mm}^2$

Critical axial compressive case $1.25(y.t.k.h)$

Max local stress $< \frac{f_k}{\gamma_{mc}}$

Moments from Lateral Load $M_{\text{ASD}}=0.000 \text{ kN.m}, M_{\text{LS,FV}}=0.000 \text{ kN.m}$

Capacity reduction factor top, $\sim F_{\text{ex}}=0.0 \text{ mm}, h_{\text{ef}}=1747 \text{ mm}, t_{\text{ef}}=127.6 \text{ mm}, t=100.0 \text{ mm}$

Capacity reduction factor mid, $\sim F_{\text{mv}}$ Creep coef. $=1.5, e_{\text{hm}}=0.000 \text{ mm}, h_{\text{ef}}=1.747$

$\frac{f_{x1}}{f_{x1}+\min{(gd, 0.24k_{\gamma_{mc}}/\gamma_{mf})}}$ $0.772\times 4.44/3 = 1.143 \text{ N/mm}^2$

Dead plus Live $1.25 \text{ Dead} + 1.5 \text{ Live}$

$\frac{f_{xax}}{V/\gamma_{mf}}$ 0.06 N/mm^2 OK

Dead plus Live plus Wind($Mz+Qz$) $1.25 \text{ Dead} + 1.05 \text{ Live} + 1.5 \text{ (Mz+Qz)}$

$\frac{f_{xax}}{V/\gamma_{mf}}$ 0.071 N/mm^2 OK

Shear Stress vh/f_{xk} 0.720

Dead plus Wind($Mz+Qz$) $1.35 \text{ Dead} + 1.5 \text{ (Mz+Qz)}$

$\frac{f_{xax}}{V/\gamma_{mf}}$ 0.069 N/mm^2 OK

Shear Stress vh/f_{xk} 0.685

Design for Lateral Loads

Design Lateral Load Wd $1.5 \text{ Wx} \ (Wxo=0.647 \text{ kN/m}^2, Wxi=0.478 \text{ kN/m}^2)$ 1.125 kN/m^2

$M_{do}=\alpha_{o}.Wxo.L^2 = 0.031\times0.647\times4.000^2 = 0.325 \text{ kN.m/m}$

$M_{di}=\alpha_{i}.Wxi.L^2 = 0.026\times0.478\times4.000^2 = 0.202 \text{ kN.m/m}$

$Ut=M_{do}/M_{ro}=M_{di}/M_{ri} = 0.325/0.584 = 0.202/0.363 = 0.556$

OK